

Atomic structure: Check your learning: Part-1

Total: 35; Time: 70 min

- 1. The wavelength of the green light from a traffic signal is 522 nm. What is the frequency and wavenumber of this radiation. (3)
- 2. The energy of a photon is 3.98×10^{-21} J. What is the wavelength in nm? (3)
- 3. Calculate the energy of one mole photons of radiation whose frequency is $5 \times 10^{14} \text{ Hz}$ (2)
- 4. Why are there so many lines in hydrogen spectrum although there is only one electron in its atom. Justify. (3)
- 5. What is the quantization? How quantization of energy was introduced in Bohr model? (3)
- 6. Write down electronic configuration of Fe^{3+} ion and answer the following. (i) What is the number of unpaired electrons in it? (ii) How many electrons in it have n = 3 and m = 0 (3)
- 7. Calculate the wavelength and energy of radiation emitted for the electronic transition from infinity to stationary state one of the hydrogen atoms. (3)
- 8. Explain Pauli's exclusion principle with an example. (2)
- 9. The unpaired electrons in Al and Si are present in 3p orbital. Which electrons will experience more effective nuclear charge from the nucleus? (2)
- 10. Write down the electronic configuration of Cr and Cu. (2)
- 11. Name the orbitals described by the following quantum number $(0.5 \times 4 = 2)$

a.
$$n = 3, l = 0$$

b.
$$n = 3, l = 1$$

c.
$$n = 3, l = 2$$

d.
$$n = 5, l = 0$$

- 12. (a) What are the shapes of s, and p, orbitals respectively? (b) Write a set of quantum numbers for a 4f orbital. (c) Name the five d orbitals and draw all the d orbitals (1 + 1.5 + 2.5 = 5)
- 13. What is the spin multiplicity of Ni and Ni⁺². (Ni: 28) (2)